Mathematics

Mark scheme for Test 1
 Tiers 3-5, 4-6, 5-7 and 6-8

department for
education and skills
creating opportunity, releasing potential, achieving excellence

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 12 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The Correct response column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative
- examples of some different types of correct response, including the most common.

The Additional guidance column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

Questions with a Using and applying mathematics element are identified in the mark scheme by an encircled U with a number that indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

The 2006 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at Edexcel.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating to marking of questions that involve money, negative numbers, algebra, time, coordinates or probability. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the Correct response column. Refer also to the Additional guidance.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil has made a conceptual error.	In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a slip such as writing $4 \mathbf{t} 6$ e 18 in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen no method marks may be awarded. Examples of conceptual errors are: misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating $35 \mathbf{t} 27$; subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21 ; incorrect signs when working with negative numbers.
The pupil's accuracy is marginal according to the overlay provided.	Overlays can never be 100% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
The pupil's answer correctly follows through from earlier incorrect work.	Follow through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow through response should be marked as correct.
There appears to be a misreading affecting the working.	This is when the pupil misreads the information given in the question and uses different information. If the original intention or difficulty level of the question is not reduced, deduct one mark only. If the original intention or difficulty level is reduced, do not award any marks for the question part.
The correct answer is in the wrong place.	Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

What if ...

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed or rubbed out and not replaced.	Mark, according to the mark scheme, any legible crossed or rubbed out work that has not been replaced.	
More than one answer is given.	If all answers given are correct or a range of answers is given, all of which are correct, the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

Marking specific types of question

Responses involving money
For example: £3.20 £7

Accept $\sqrt{ }$	Do not accept x
\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), £3 20, £3,20, 3 pounds 20, £3-20, £3 20 pence, £3:20, $£ 7.00$	x Incorrect or ambiguous indication of the amount eg £320, £320p or £700p
\checkmark The unit, £ or p, is usually printed in the answer space. Where the pupil writes an answer outside the answer space with no units, accept responses that are unambiguous when considered alongside the given units eg with $£$ given in the answer space, accept 3.20 $7 \text { or } 7.00$ \checkmark Given units amended eg with $£$ crossed out in the answer space, accept 320p 700p	x Ambiguous use of units outside the answer space eg with $£$ given in the answer space, do not accept 3.20 p outside the answer space x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg £3.2, £3 200, £32 0, £3-2-0 $£ 7.0$

Responses involving negative numbers

For example: -2

Accept \checkmark	Do not accept \times
To avoid penalising the error below more than once within each question, do not award the mark for the first occurrence of the error within each question. Where a question part carries more than one mark, only the final mark should be withheld.	

Responses involving the use of algebra

For example: $2 \mathrm{p} n \quad n \mathrm{p} 2 \quad 2 n \quad \frac{n}{2} \quad n^{2}$

Accept	Take care ! Do not accept \times
```\checkmark Unambiguous use of a different case or variable eg N x used for n```	! Unconventional notation   eg $n \mathbf{t} 2$ or $2 \mathbf{t} n$ or $n 2$   or $n \mathrm{p} n$ for $2 n$   $n \mathbf{t} n$ for $n^{2}$   $n$ d 2 for $\frac{n}{2}$ or $\frac{1}{2} n$   $2 \mathrm{p} 1 n$ for $2 \mathrm{p} n$   2 p 0 n for 2   Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.   x Embedded values given when solving equations   eg in solving $3 x \mathrm{p} 2=32$, $3 \mathbf{t} 10 \text { p } 2=32 \text { for } x=10$   To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
$\checkmark$ Words used to precede or follow equations or expressions   eg $t=n \mathrm{p} 2$ tiles or tiles $=t=n \mathrm{p} 2$ for $t=n \mathrm{p} 2$	! Words or units used within equations or expressions   eg $n$ tiles p 2   $n \mathrm{~cm} \mathrm{p} 2$   Do not accept on their own. Ignore if accompanying an acceptable response.
$\checkmark$ Unambiguous letters used to indicate expressions eg $t=n \mathrm{p} 2$ for $n \mathrm{p} 2$	$x$ Ambiguous letters used to indicate expressions eg $\quad n=n \mathrm{p} 2$ for $n \mathrm{p} 2$

Responses involving time
A time interval For example: 2 hours 30 minutes

Accept $\sqrt{ }$	Take care ! Do not accept x
$\checkmark$ Any unambiguous indication eg 2.5 (hours), 2h 30   $\checkmark$ Digital electronic time ie 2:30	x Incorrect or ambiguous time interval   eg 2.3(h), 2.30, 2-30, 2h 3,   2.30 min   ! The unit, hours and/or minutes, is usually printed in the answer space. Where the pupil writes an answer outside the answer space, or crosses out the given unit, accept answers with correct units, unless the question has specifically asked for other units to be used.
A specific time For example: 8:40am	17:20
Accept $\checkmark$	Do not accept x
$\checkmark$ Any unambiguous, correct indication   eg 08.40, 8.40, 8:40, 0840, 840 ,   $8-40$, twenty to nine, 8,40   $\checkmark$ Unambiguous change to 12 or 24 hour clock   eg 17:20 as 5:20pm, 17:20pm	x Incorrect time   eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$   x Incorrect placement of separators, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

## Responses involving coordinates

For example: (5, 7)

Accept $\sqrt{ }$	Do not accept x
$\checkmark$ Unconventional notation   eg (05, 07 )   ( five, seven )   $\left(\begin{array}{l}x, \\ 5 \\ 5\end{array}\right)$   ( $x$ e $5, y$ e 7 )	x Incorrect or ambiguous notation   eg ( 7,5 )   $\left(\begin{array}{l}y, \\ 5 \\ 5\end{array}\right)$   (5x, 7y)   $\left(5^{x}, 7^{y}\right)$   $(x-5, y-7)$

## Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.
For example: $\begin{array}{llrl} & 0.7 & 7 & 70 \%\end{array}$


## Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers $3-5,4-6$ and $6-8$.
A total of 121 marks is available in tier 5-7.

## Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the NAA website www.naa.org.uk/tests from Monday 19 June 2006. NAA will also send a copy to each school in July.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the external marking agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

BLANK PAGE

$\begin{array}{\|l\|l\|l\|} \hline \text { Tier \& Question } \\ \hline 3-5 & 4-6 & 5-7 \\ \hline \end{array}$		Line symmetry		
1			Correct response	Additional guidance
		1m	Draws only the correct line of symmetry on the first shape, ie   Draws only the correct line of symmetry on the second shape, ie	! Lines not ruled, accurate or solid Accept lines, even if dotted or dashed, extending at least across the shaded area, provided the pupil's intention is clear





Tier \& Question				Lemonade
3-5 4-6	5-7 6-8			
5			Correct response	Additional guidance
a		1m	£ 1.17	! For parts (a), (b) and (c), costs given in pence without amendment of units Penalise only the first occurrence of the cost given in pence within a correct response eg, for the costs as   - 117, 110, 109 [with correct bottle sizes] Mark as $0,1,1$ eg, for the costs as   - 110, 109, 117 [with correct bottle sizes] Mark as $0,0,1$
b		1m   (U1)	Gives a complete correct response, ie   Two $1 \frac{1}{2}$ litre bottles, cost $£ 1.10$ or   A 1 litre bottle and a 2 litre, cost $£ 1.09$	$\checkmark$ For parts (b) or (c), unambiguous identification eg, for the two $1 \frac{1}{2}$ litre bottles   - One of the middle size, and another   - $1 \frac{1}{2}$ p $1 \frac{1}{2}$   - 55 and 55
c		1m   (U)	Gives a complete correct response that is different from one credited in part (b)	! For parts (b) or (c), uses three 1 litre bottles and gives the cost as $£ 1.17$   If their (a) is either 1.10 or 1.09 , accept   ! For parts (b) and (c), correct costs given with incorrect or no identification of bottle sizes eg   -1.10, then 1.09   Mark as 0,1
d		$\begin{gathered} \mathbf{2 m} \\ \\ o r \\ \mathbf{1 m} \end{gathered}$	Shows a complete correct method with not more than one computational error eg $\begin{array}{lll} 1.5 & 2 & \\ \frac{1.5}{4} & 2 & \\ & \text { (error) } & 2 \\ & 2 & \\ & \frac{2}{10} & 4 \mathrm{p} 10 \text { e } 14 \end{array}$   or   Shows the value 3 , with no evidence of an incorrect method for this value	


					Computation
Tier \& Question$\begin{array}{\|l\|l\|l\|} \hline 3-5 & 4-6 & 5-7 \\ \hline \end{array}$					
6				Correct response	Additional guidance
a			1m	83	
			1m	185	
b			1m	37	
c			1m	62	




Tier \& Question						Changing numbers
	4-6		6-8			
9	3				Correct response	Additional guidance
a	a			1m	30	
b	b			1m	1012	
c	c			1m	12	


						Red Kites
$$						
10	4				Correct response	Additional guidance
a	a			1m	1992	$\checkmark$ Unambiguous indication of year eg - 92
b	b			1m	1	! Units given Ignore
c	c			1m	6	



Tier \& Question					Place value
3-5		5-7 6-8			
11	5			Correct response	Additional guidance
a	a		1m	2022	
b	b		1m	20.22 or equivalent	! Follow through from part (a) Accept as their (a) d 100   ! Answer of 20 or 20.2   Do not accept unless 20.22 is also seen, or 20 or 20.2 is from their follow through
c	c		$2 \mathrm{~m}$   or $\mathbf{1 m}$	0.45 or equivalent   Shows the values 5.85 and 5.4 or equivalent or   Shows the values 0.2 and 0.25 or equivalent or   Shows or implies a complete correct method with not more than one computational error eg   - 5.85 m 4.4 (error) e 1.45	$X$ Conceptual error within a correct method eg   - 3.5 p 2.35 e 5.40   - 3.5 p 2.35 e 5.310   - 2.35 is bigger than 2.1 by 0.34



Tier \& Question			28 times table		
		5-7 6-8			
13	7	1		Correct response	Additional guidance
a	a	a	1m	Gives a correct method to show that 9 t 28 e 252   eg   ' $\begin{array}{r}28 \\ \frac{\mathbf{9}}{\frac{9}{7}} \\ \text { [with evidence of the } 7 \text { tens] }\end{array}$   - 20 8   9 180 72$\quad$ so 72 p 180   - 10 t 28 e 280 , 280 m 28   - 9 t 30 m 18   - 2 t 28 e 56,   4 t 28 e 112,   8 t 28 e 224 , so 224 p 28   - $9 \frac{28}{25^{7} 2}$ [with evidence of the 7 tens]	$\checkmark$ Minimally acceptable indication   eg   - 72 p 180   - 280 m 28   - 270 m 18   ! Method uses repeated addition   Accept provided there is evidence of how the addition has been carried out   eg, accept   - 28   28   $\frac{28}{\frac{252}{7}}$   - 28, 56, 84, 112, 140, 168, 196, 224, 252   X Final answer incorrect   eg   $\begin{array}{r}28 \\ \mathbf{t} \quad 9 \\ \hline \frac{152}{7}\end{array}$
b	b	b	2 m	756	
			$\begin{gathered} o r \\ \mathbf{o r} \end{gathered}$	Shows or implies a complete correct method with not more than one computational error   The most common correct methods:   Use the relationship between $27 \mathbf{t} 28$ and $9 \mathbf{t} 28$ eg   - 3 t 252 (or their incorrect value from (a))   - 252 p 252 p 252   Calculate 27 t 28 directly   eg   - 10 t 27 e 270,270 t 3 e 810 ,   810 m 54   so 400 p 160 p 140 p 56 $\begin{aligned} & \quad \begin{array}{l} 28 \\ \mathbf{t} \frac{27}{460} \\ \frac{196}{656} \end{array} \text { (error) } \end{aligned}$	$\checkmark$ For 1m, method uses repeated addition   X Conceptual error $\begin{array}{r} \text { eg } \\ +\quad 28 \\ \mathbf{t} 27 \\ -56 \\ 196 \\ 252 \end{array}$   - 20 t 20 e 400 , 7 t 8 e 56 400 p 56 e 456



Tier \& Question			Paper		
3-5		5-7 6-8			
15	9	2		Correct response	Additional guidance
a	a	a	3m   or 2m   or   1m	Completes all six entries correctly, ie   Completes at least four entries correctly   or   Completes either column correctly   Completes any one row correctly   or   Gives an incorrect value for the area of square A, but not 8 , then follows through correctly, by halving each time, to find the other two areas eg   or   Gives the two columns transposed but otherwise correct	
b	b	b	1m	32	! Follow through from part (a) Accept as half their area of square A, provided this was not 8 , or their area of rectangle $B$, provided this was not 4
c	c	c	1m   (U1)	Indicates that the perimeter is greater than 24 cm and gives a correct explanation eg   - 8 p 8 p a number bigger than 8 is bigger than 24   - The hypotenuse is longer than 8 cm and the other two are 8 cm   - The diagonal is the longest side so it is greater than 8 cm   - $8^{2}$ p $8^{2}$ e $128,3128>8$	$\checkmark$ Minimally acceptable explanation   eg   - It doesn't have 3 equal sides   - The slope is the biggest side   - The fold is $11 .(\ldots)$ (or 3128)   - $128>8^{2}$   - The longer side is about 10   - The perimeter would be more like 26   ! Incorrect units inserted   Ignore   $X$ Incorrect statement   eg   - The longer side is 10   - The perimeter is 26   Note to markers: The length of the hypotenuse is 11.3 cm and the perimeter is 27.3 cm , to 3 s.f.


Tier \& Question					CD player
3-5	4-6	5-7 6-8			
16	10	4		Correct response	Additional guidance
a	a	a	2m   or   1m	Gives all three correct values, ie   Gives two correct values	! Units given Ignore   ! Follow through   For 1m, allow follow through from an incorrect value that is correctly divided by 2 , provided their values are not $10,5,2 \frac{1}{2}$ or 84, 42, 21   eg, for 1 m accept
b	b	b	$2 \mathrm{~m}$   or 1m	£ 98.70   Shows the digits 987   or   Shows or implies the addition of the three   values corresponding to $10 \%, 5 \%$ and $2 \frac{1}{2} \%$ eg   - 8.4 p 4.2 p 2.1   - 14.7 seen   - The sum of their 3 values from part (a) seen [with or without addition to 84]   or   Shows or implies a complete correct method with not more than one computational error eg   - 1.175 t 84   - $84 \mathrm{p} \frac{17.5}{100} \mathbf{t} 84$	! Follow through from part (a) For 2 m , allow follow through as 84 p the sum of their three values from part (a), provided at least one of their values is not an integer, and the total is rounded or truncated to a whole number of pence


Tier \& Question				Solving
3-5 4-6	5-7 6-8			
1711	5		Correct response	Additional guidance
		1m   1m	4   m7	! Incorrect notation   eg, as an answer for the first mark   - $k$ et 4   Penalise only the first occurrence   ! Incomplete processing   eg, as an answer for the first mark   - $k$ e $\frac{8}{2}$   Penalise only the first occurrence


Tier \& Question			Odd or even?		
3-5		5-7 6-8			
18	12	6		Correct response	Additional guidance
a	a	a	1 m	Indicates that the number must be even and gives a correct explanation   The most common correct explanations:   State or imply that 4 itself is an even number eg   - 4 is even, so all its multiples must be too   - 4 is even and even $\mathbf{t}$ even e even, and even $\mathbf{t}$ odd e even   - You add fours together to get the multiples and even numbers added give even answers   Show or imply the link between multiples of 4 and even numbers   eg   - It's $2 \mathbf{t} 2 \mathbf{t}$ something, which must be even   - To get the 4 times table, you double the 2 times table   - Multiples of 4 always end in the evens $0,2,4,6$ or 8 , eg $4,8,12,16,20 \ldots$	$\checkmark$ Minimally acceptable explanation   eg   - 4 is even (or a multiple of 2 )   - All the 4 times table is even   - If you start with an even number, you end up with one too   - If the multiple is odd, the number itself would have to be odd   - 4 is a multiple of an even number   - Anything $\mathbf{t}$ an even number is even   - Any multiple of an even number is even   - Even $p$ even e even   $\checkmark$ Minimally acceptable explanation   eg   - It's 2 t 2 t something   - They're every other even number   - It's the 2 times table doubled   - They end in $0,2,4,6$ or 8   X Incomplete or incorrect explanation eg   - All multiples of 4 are even   - Any odd number divided by 4 leaves a remainder   - Any even number $\mathbf{t}$ even e even   - $3 \mathbf{t} 4$ e 12 which is even   - 4, 8, 12, 16, $20 \ldots$   - They all end in even numbers   - They end in 2, 4, 6 or 8
b	b	b	1m	Indicates that the number could be odd or even and gives a correct explanation that shows or implies at least one odd and one even factor eg   - Factors of 20 are 1, 2, 4, 5, 10 and 20, some are odd and some are even   - There are two odd factors and four even factors of 20   - It could be 4 (even) or 5 (odd)   - 4 t $5=20$   - 20 is even, but 1 is odd and goes into everything	$\checkmark$ Minimally acceptable explanation   eg   - $1,2,4,5,10$ and 20   - It could be 4 or 5   ! Incomplete list of factors given   Condone, provided none is incorrect and at least one odd and one even factor are shown eg, accept   - The factors of 20 are $1,2,4$ and 5   $X$ Incomplete or incorrect explanation eg   - Factors of 20 can be odd or even   - It could be 5   - It could be 2 (even) or 3 (odd)


Tier 3	\& Qu	5-7 6-8			Hexagon patterns
191	13	7		Correct response	Additional guidance
			$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \\ \\ \hline 1 \mathrm{~m} \end{array}$	Shows the value 21 or 40 , with no evidence of an incorrect method or a method using counting on for the value   or   Shows a correct method for both types of tile with not more than one computational error eg   - 20 p 1, 20 t 2   - 20 t 3 p 1   or   Shows a correct expression for the total number of hexagons, in which the terms in $n$ have been collected together   eg   - $3 n \mathrm{p} 1$   - $n \mathbf{t} 3 \mathrm{p} 1$	$\times$ For $2 m$ or 1m, incorrect notation   eg, for 2 m   - $61 n$   $\times$ For 1m, method shown uses counting on

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{$$
\begin{array}{|l|}
\hline \text { Tier \& Question } \\
\hline 3-5 \\
\hline \text { 4-6 } \\
\hline
\end{array}-7 \text { 6-8-8 }
$$} \& \& \& \& \& \& \& \multirow[t]{2}{*}{Dice} <br>
\hline 14 \& 81 \& \& \multicolumn{5}{|c|}{Correct response} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Additional guidance}} <br>
\hline \& \& $1 m$

$1 m$ \& \multicolumn{5}{|l|}{| Gives all three numbers correctly for the first net, ie |
| :--- |
| Gives all three numbers correctly for the second net, ie |} \& \& <br>

\hline
\end{tabular}

Tier \& Question					Sizing
3-5 4-6	5-7				
15	9	2		Correct response	Additional guidance
a	a	a	2 m   or   1m	Gives the four values in the correct order eg   Shows any three of the values $25,9,27,16$, with no evidence of an incorrect method for a correct value   or   Gives the four values in order of size, largest to smallest	
b	b	b	$2 \mathrm{~m}$   or $1 \mathrm{~m}$	Shows the value 78125 , even if there is subsequent incorrect working   or   Shows or implies a complete correct method, with at least some correct processing, with not more than one computational error eg   - 3125 t 100 e 312500 ,   312500 d 4   - 3125 t 5 e 15625   15625 t 5   - 3125   $\mathbf{t} \quad 25$   15525 (error)   $\frac{62500}{78025}$   - 3125 t 10 d 2 e 15125 (error)   15125 t 10 d 2 e 75625	$\times$ Follow through using their value for $5^{2}$ from part (a)   $\times$ Conceptual error   $\begin{array}{r}\text { eg } \\ +\quad 3125 \\ \mathbf{t} \quad 25 \\ \hline 15625 \\ \hline 6250 \\ \hline 21875\end{array}$   - $5^{5}$ e $3125,5^{2}$ e 25 , 3125 p 25 e 3150   - $5^{2}$ e 10,3125 t 10 e 31250


Tier \& Question					Operations
3-5 4-6	5-7				
16	10	3		Correct response	Additional guidance
			2m   or   1m	Gives all four correct operations, ie   m   d   p   t   Gives any two correct operations	


Tier \& Question					Finding $y$
3-5 4-6	5-7				
17	11	4		Correct response	Additional guidance
			2m   or   1m	$6 \frac{1}{2}$ or equivalent   Shows or implies a correct first step of algebraic manipulation that either reduces the number of terms or collects unknowns on one side of the equation and numbers on the other   eg   - 14 e $2 y \mathrm{p} 1$   - $3 y$ p 13 e $5 y$   - $14 \mathrm{~m} 1=5 y \mathrm{~m} 3 y$   - $13=2 y$   - 13 d 2	


Tier \& Question					Favourite sport
3-5 4-6	5-7				
18	12	5		Correct response	Additional guidance
a	a	a	1m	Indicates No and gives a correct explanation eg   - You can only find the mean of a set of numbers   - The data are in words not in figures so the mean cannot be found   - You can't add words up then divide by how many there are   - There are no numerical values	$\checkmark$ Minimally acceptable explanation   eg   - They are words   - You need numbers   - There are no quantities (or figures)   - You need to add them together   - You can't divide them (by 10)   X Incomplete explanation   eg   - You can't find the mean of sports   - You can't have fractions of a word   - Not enough information   X Their explanation shows misconceptions about the mean   eg   - You can't add them up and divide by 5   - You can't divide a word by a word   - You can't find the mean of words unless you use the frequencies   - It doesn't say whether Hanif asked them to give the sports marks out of ten   - You can't put them in order because they are words not numbers   X Numerical values assigned   eg   - Yes, football and swimming are 8 letters, cricket and netball are 7 and hockey is 6
b	b	b	1m	Indicates Yes and gives a correct explanation eg   - The mode is the most common thing, so you can find it for numbers or words   - The mode is football as it was chosen most often, by four people   - You can see from the table what was the most popular sport	$\checkmark$ Minimally acceptable explanation   eg   - Most common   - Most popular   - More like football   - Highest is football   - Football is favourite   X Mode identified but not explained   eg   - The mode is football   - Four of the ten chose football so this is the mode   - Football appears more than once   $X$ Incomplete or incorrect explanation   eg   - Most   - You can see how many picked each sport   - There's more than one of some results   - You can find the mode from both numbers and words   - Football was chosen the most as five people said that

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Tier \& Question} \& \& \& \multirow[b]{2}{*}{Consideration} \\
\hline 3-5 4-6 \& \& 6-8 \& \& \& \\
\hline 19 \& 13 \& 6 \& \& Correct response \& Additional guidance \\
\hline a \& a \& a \& 1m \& \begin{tabular}{l}
Gives a correct counter example, using a value that is less than or equal to one eg \\
- \(\mathrm{m} 4 \mathbf{t} 2=\mathrm{m} 8\) which is not greater than 2 \\
- 0.1 t \(2=0.2,0.2<2\) \\
- \(2 \mathbf{t} 1=2\) which is not greater than 2 \\
or \\
Gives a correct general explanation \\
eg \\
- Two times a negative number is less than 2 \\
- Double a number between 0 and 1 is not greater than 2
\end{tabular} \& \begin{tabular}{l}
! Throughout the question, the result of their counter example is not shown and/or the comparison is not explicit \\
Condone provided only one of these aspects is omitted \\
eg, for part (a) accept \\
- m 4 t \(2=\mathrm{m} 8\) \\
- m4t 2 < 2 \\
However, penalise only the first occurrence of both aspects omitted \\
eg, for part (a) \\
- m4t 2 \\
! Throughout the question, their general statement makes no explicit comparison
\end{tabular} \\
\hline b \& b \& b \& 1m

U1) \& \begin{tabular}{l}
Gives a correct counter example, using a value that is less than or equal to zero eg <br>
- $2 \mathrm{~m}(\mathrm{~m} 3)=5,5>2$ <br>
- $2 \mathrm{~m} 0=2$ which is not less than 2 <br>
or <br>
Gives a correct general explanation eg <br>
- Two minus a negative number is greater than 2

 \& 

eg, for part (a) accept <br>

- Multiply it by a negative number <br>
- Numbers less than 1 <br>
eg, for part (b) accept <br>
- Take away a negative number <br>
- Numbers less than 0 <br>
eg, for part (c) accept <br>
- Take a number from 0 to 1 and square it <br>
- Positive numbers that are decimals starting with nought point... <br>
! Throughout the question, other numerical examples or general reasoning given alongside a correct response <br>
Ignore other numerical examples, even if they are incorrect or support the given statement If a correct counter example is given, ignore any general explanation unless it contradicts the counter example given
\end{tabular} <br>

\hline \& c \& c \& 1m \& | Indicates No and gives a correct counter example, using a value that is greater than or equal to zero and less than or equal to one eg |
| :--- |
| - $1^{2}=1$ which is equal not bigger |
| - $0 \mathbf{t} 0=0$, so it stays the same |
| - $\left(\frac{1}{2}\right)^{2}={ }_{4}^{1}$ but ${ }_{4}^{1}<\frac{1}{2}$ |
| - $0.1 \mathbf{t} 0.1=0.01$, not greater than 0.1 |
| or |
| Indicates No and gives a correct general explanation |
| eg |
| - When you square a number between 0 and 1 the answer gets smaller not bigger |
| - Fractions bigger than zero that are not top heavy get smaller when squared | \& | $\checkmark$ For part (c), minimally acceptable counter example eg |
| :--- |
| - $1^{2}=1$ |
| - $0 \mathbf{t} 0$ is not greater than 0 |
| - $\left(\frac{1}{2}\right)^{2}<\frac{1}{2}$ |
| X For part (c), incorrect response |
| eg |
| - $(\mathrm{m} 2)^{2}=m 4$ which is less than m 2 |
| - It's not true for negative numbers |
| - It is only true for numbers that are bigger than 1 |
| - It is not true for numbers that are smaller than 1 |
| - It's not true for decimals or fractions |
| - It's only false when the number is 1 | <br>

\hline
\end{tabular}




Tier \& Question			Fractions		
3-5 4-6	5-7 6				
20	15	8		Correct response	Additional guidance
			1m	$\frac{7}{12}$ or equivalent   For either calculation shows, or implies by a correct answer or otherwise, a correct method that would enable addition or subtraction of fractions   The most common correct methods:   Show or imply correct fractions with common denominators   eg, for the first calculation   - $\frac{3}{12}, \frac{4}{12}$ seen   - $\frac{1}{4}=\frac{15}{60}, \frac{1}{3}=\frac{20}{60}$   - $\frac{3^{\frac{1}{2}}}{6}$   eg, for the second calculation   - $\left(\frac{3}{5}=\right) \frac{9}{15}$ seen with no attempt to change the denominator of the fraction $\frac{1}{15}$   - $\frac{3}{5}=\frac{18}{30}, \frac{1}{15}=\frac{2}{30}$   Convert correctly to decimals or percentages, even if their value is rounded or truncated eg, for the first calculation   - 0.25 and 0.33 seen   - 25 and 33.3 seen eg, for the second calculation   - 0.6 and 0.067 seen	X For the first and third marks, incorrect notation or incorrect further working eg, for the first mark $\cdot \frac{3 \frac{1}{2}}{6}$   ! Throughout the question, decimal or percentage values rounded or truncated For $\frac{7}{12}$, accept 0.583 or better, or percentage equivalents   For $\frac{8}{15}$, accept 0.53 or better, or percentage equivalents   For $\frac{1}{3}$, accept 0.33 or better, or percentage equivalents   For $\frac{1}{15}$, accept 0.066 or 0.067 or better, or percentage equivalents




Tier \& Question					Building
3-5	5-7	6-8			
	18	11		Correct response	Additional guidance
	a	a	1m	Gives a correct explanation eg   - The highest was 11.7 , the smallest was 6.5 $11.7 \mathrm{~m} 6.5=5.2$   - 11.7 m 6.5   - Count up from 6 to 11 , that's 5 , then count up from 5 to 7 for the 0.2	$\checkmark$ Minimally acceptable explanation eg   - 6.5 to 11.7   ! Ambiguous notation   eg   - 6.5 m 11.7   Condone   X Maximum and minimum values given, but with no indication of how the range is found eg   -11.7, 6.5   X Values not identified or identified incorrectly   eg   - It's the largest - the smallest   - $11\|7 \mathrm{~m} 6\| 5=5.2$
	b	b	1m	8.7 or equivalent	$\checkmark$ Unambiguous indication of correct value   ! Value identified incorrectly eg $\text { - } 8 \mid 7$   Condone if this error was penalised in part (a), otherwise do not accept
	c	c	1m	$33_{3} \frac{1}{-}$	! Value rounded Accept 33 or better




Tier \& Questio		Line of best fit		
21			Correct response	Additional guidance
a	1	1m	Indicates that the correlation is negative	! Negative qualified   Ignore qualifiers that accompany 'negative'   eg, accept   - Strong negative   - A bit negative   Do not accept without 'negative'   eg, do not accept   - Strong   - Inverse   $\times$ Relationship described without reference to correlation   eg   - The more time spent studying, the less time spent watching television
b	1	1m	Gives a correct explanation   The most common correct explanations:   Use the gradient or its meaning eg   - That would be positive correlation, not negative   - That would mean the more studying you do the more TV you watch   - The gradient should be negative, but $y$ e $x \mathrm{p} 40$ has a positive gradient   - The gradient is m 1 , not 1   - It would slope up not down	$\checkmark$ Minimally acceptable explanation eg   - It would not be negative [with 'negative' given for part (a), implying correlation]   - The gradient is not negative   - It would need to be $m x$   - It would slope the wrong way   - It would go up not down   - It would look more like this:   [sketches any positive gradient   X Incomplete explanation   eg   - It would not be negative [without 'negative' given for part (a)]   - The equation needs a minus sign   - The line is going in the wrong direction   - It's at the wrong angle


		Line of best fit (cont)		
Tier \& Question    $3-5$ $4-6$   $5-7$ 6-8				
	2114		Correct response	Additional guidance
	b b	$\begin{array}{\|c\|} \mathbf{1 m} \\ \text { cont } \end{array}$	Refer to the fact that the values of $y$ do not go above 40   eg   - When $x$ is positive, $y$ would always be more than 40 , but none of the points are like this   - Adding 40 to the $x$ coordinates of the points gives different $y$ coordinates from theirs   - Nobody watched TV for more than 40 hours, but this equation would give hours watching TV as hours studying plus 40   Use a point or points on the line of best fit, or the meaning of its coordinates eg   - When $x$ is $10, y$ e 10 p 40 e 50 , but on the graph it is 30   - When $y$ is 0,0 e $x \mathrm{p} 40$ so $x$ e m40, but the line of best fit goes to $(40,0)$   - Someone studying for 20 hours would watch TV for about 20 hours, not 60   - $y=x \mathrm{p} 40$ means that $y>x$, but this is not true for some of the points on the line   Give a correct equation for the line of best fit eg   - The line of best fit goes to 40 on both axes so the equation should be $x \mathrm{p} y \mathrm{e} 40$   - It should be $y$ e mxp 40	$\checkmark$ Minimally acceptable explanation   eg   - The vertical scale only goes up to 40   - All the $y$ s are below 40 [condone that this is not true at $(0,40)$ ]   - 10 p 40 e 50 , the graph doesn't go up that far   - Nobody watched TV for more than 40 hours   X Incomplete explanation   eg   - The scale only goes up to 40   - Everything is below 40   - Everything would be higher on the graph   - Nobody studied for more than 40 hours   $\checkmark$ Minimally acceptable explanation   eg   - When $x$ e $10, y$ e 30 so $y \neq x$ p 40   - Line goes through $(40,0)$ but $y$ e 40 p 40 $y$ e 80   - $20 \neq 20$ p 40   - The equation shows that $y>x$, but this is not always true for the line   X Incomplete or incorrect explanation   eg   - $5 \neq 30 \mathrm{p} 40$ [indicating use of the cross at $(30,5)$ rather than a value on the line of best fit]   $\checkmark$ Minimally acceptable explanation   eg   - $x$ p ye 40   - yemxp 40   $\times$ For part (b), incorrect statement alongside a correct explanation   eg   - It should be $x$ p $y$ e 40, $y$ e $x \mathrm{p} 40$ would be a vertical line   - That would be positive correlation, the equation should be $y=x \mathrm{~m} 40$



Tier \& Question				Rounding
3-5 4-6	5-7 6-8			
	16		Correct response	Additional guidance
	a	$\begin{gathered} 2 \mathrm{~m} \\ \\ o r \\ 1 \mathrm{~m} \end{gathered}$	$8.7 \mathbf{t} 10^{4}$   Shows the value 86790 , not expressed in any kind of index form or   Shows the digits 87	! Throughout the question, zero(s) given after the last decimal place within standard form notation   Condone   eg, for 2 m in part (a) accept   - 8.7000 t $10^{4}$
	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	1 t $10^{-3}$   Shows the value 0.0008679 or equivalent, not expressed in any kind of index form   or   Shows the value 0.001 or equivalent eg   - 0.1 t $10^{-2}$   or   Shows the value 0.0009 or equivalent eg   - 9.0 t $10^{-4}$   - 0.9 t $10^{-3}$	



Tier \& Question					Mean of zero
3-5		7-8			
		18		Correct response	Additional guidance
			$2 \mathrm{~m}$   or   1m   (U1)	Makes all three correct decisions, ie   Makes two correct decisions	


Tier \& Question		Equation		
3-5 4-6	5-7 6-8			
	19		Correct response	Additional guidance
	a	1m	(p)20 and m20, in either order	$\checkmark$ Answer of $\pm 20$
	b	1m	Gives a correct explanation eg   - The denominator is zero, and fractions with denominators of zero are not defined   - $\frac{60}{0}$ isn't defined	$\checkmark$ Minimally acceptable explanation   eg   - The denominator would be zero   - You can’t divide by 0   - There's nothing to divide 60 by   - $\frac{60}{0}$   ! Use of 'infinity'   Condone   eg, accept   - The closer the denominator gets to 0 , the more the fraction tends towards infinity   - Anything divided by 0 e infinity   - $\frac{60}{0}$ e   $X$ Incomplete or incorrect explanation   eg   - It's $\frac{60}{\sqrt{\sigma}}$ and that's impossible   - Because 10 m 10 e 0   - You cannot divide by zero and you cannot find the square root of zero   - The denominator would be zero but $\begin{array}{r} \frac{60}{0} \text { e } 60 \\ +\frac{60}{0} \text { e } 0 \end{array}$
	c	1m	Gives a value less than 10	$\checkmark$ Correct set of values described eg   - $x<10$   - Less than 10



Tier \& Question		Tangent		
3-5 4	5-7 6-8			
	21		Correct response	Additional guidance
		2m	Gives a correct proof that shows or implies the following three facts:   1. AC is a diameter (of the large circle)   2. $\angle \mathrm{APC}$ is $90^{\circ}$   3. PC is a radius (of the small circle) eg   - Because AC is a diameter of the larger circle, $\angle \mathrm{APC}$ must be $90^{\circ}$. PC is a radius of the smaller circle and since AP is at right angles to PC, AP must be a tangent of the smaller circle   - PC is a radius $\Leftarrow$ given   $\angle \mathrm{APC}=90^{\circ} \Leftarrow$ angle in a semicircle   [1 implied]   $\therefore \mathrm{AP}$ is a tangent   - An angle subtended by a diameter is $90^{\circ}$,   [1 implied] so the line through A and P is at right angles [2 implied] to a radius of the smaller circle [3 implied]   $b$ e $\frac{180 \mathrm{~m} 2 a}{2}$ so $b$ e $90 \mathrm{~m} a$   therefore $a \mathrm{p} b \mathrm{e} 90$   [1 p 2 implied] and PC is a radius of the small circle   States or implies that AC is a diameter (of the large circle)   or   States or implies that $\angle \mathrm{APC}$ is $90^{\circ}$   or   States or implies that PC is a radius (of the small circle)	$\checkmark$ Minimally acceptable proof   eg   - Since AC goes through B, [1 implied] angle P is a right angle [2 implied] and P is joined to the centre [ 3 implied ]   - ABCD goes through the diameters   [1 implied]   so AP touches the small circle at right angles   [2 implied]   to the radius   [3 implied]   X For 2m, incomplete proof   eg   - $\angle \mathrm{APC}$ is 90 , so AP and radius PC are at right angles and AP must be a tangent to the smaller circle   [1 omitted]   - AC is a diameter and AP touches the small circle at P where PC is a radius   [2 omitted]   - $\angle \mathrm{APC}=90^{\circ}$ because AP and PC are joined to either end of a diameter, so AP is a tangent as it's at right angles to PC

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Line symmetry	12
2				Step sizes	13
3				Temperature	14
4				Attending school	14
5				Lemonade	15
6				Computation	16
7	1			Spinners	17
8	2			Adding three	18
9	3			Changing numbers	18
10	4			Red Kites	18
11	5			Place value	20
12	6			Completing quadrilaterals	21
13	7	1		28 times table	22
14	8	3		Matching expressions	23
15	9	2		Paper	24
16	10	4		CD player	25
17	11	5		Solving	26
18	12	6		Odd or even?	27
19	13	7		Hexagon patterns	28
	14	8	1	Dice	29
	15	9	2	Sizing	30
	16	10	3	Operations	31
	17	11	4	Finding y	31
	18	12	5	Favourite sport	32
	19	13	6	Consideration	33
	21	14	7	Test	34
	20	15	8	Fractions	36
		16	9	Triangle	37
		17	10	Multiplication grids	38
		18	11	Building	39
		19	12	Quiz	40
		20	13	$x$ and $y$	41
		21	14	Line of best fit	42
		22	15	Thinking diagonally	44
			16	Rounding	45
			17	Factorising	46
			18	Mean of zero	47
			19	Equation	48
			20	Journeys	49
			21	Tangent	50

